Subset of Formulas for Ray Tracing

Sasan Ardalan, https://www.radiocalc.com

January 7, 2019

1 Introduction

These are key sets of formula for ray tracing from Jones and Stephenson (1975)

1.1 Reference

R. Michael Jones, Judith J. Stephenson," A Versatile Three-Dimensional Ray Tracing Compute Program for Radio Waves in the Ionosphere," OT Report 75-75, US Department of Commerce, October 1975

2 Formulas

$$
\begin{gather*}
H\left(r, \theta, \varphi, k_{r}, k_{\theta}, k_{\varphi}\right)=\frac{1}{2} R e\left[\frac{c^{2}}{\omega^{2}}\left(k_{r}^{2}+k_{\theta}^{2}+k_{\varphi}^{2}\right)-n^{2}\right] \tag{1}\\
\frac{d r}{d \tau}=\frac{\partial H}{\partial k_{r}} \tag{1}\\
\frac{d \theta}{d \tau}=\frac{1}{r} \frac{\partial H}{\partial k_{\theta}} \tag{1}\\
\frac{d \varphi}{d \tau}=\frac{1}{r \sin \theta} \frac{\partial H}{\partial k_{\varphi}} \tag{1}\\
\frac{d k_{r}}{d \tau}=-\frac{\partial H}{\partial r}+k_{\theta} \frac{d \theta}{d \tau}+k_{\varphi} \sin \theta \frac{d \varphi}{d \tau} \tag{1}\\
\frac{d k_{\theta}}{d \tau}=\frac{1}{r}\left(-\frac{\partial H}{\partial \theta}-k_{\theta} \frac{d r}{d \tau}+k_{\varphi} r \cos \theta \frac{d \varphi}{d \tau}\right) \tag{1}\\
\frac{d k_{\varphi}}{d \tau}=\frac{1}{r \sin \theta}\left(-\frac{\partial H}{\partial \varphi}-k_{\varphi} \sin \theta \frac{d r}{d \tau}-k_{\varphi} r \cos \theta \frac{d \theta}{d \tau}\right) \tag{1}\\
\frac{d \omega}{d \tau}=\frac{\partial H}{\partial t} \tag{1}
\end{gather*}
$$

Table 1: List of Symbols

λ	Wavelength
λ_{0}	Wavelength Free Space
τ	Independent variable in Hamilton's Equations
φ	Longitude in spherical polar coordinates
ω	$2 \pi f$, angular wave frequency
θ	Colatitude in spherical polar coordinates
$k_{r}, k_{\theta}, k_{\varphi}$	Components of the propagation vector in the $\mathrm{r}, \theta, \varphi$ directions - a vector perpendicular to the wave front having a magnitude $\frac{2 \pi}{\lambda}=\frac{\omega}{v}$
f	Wave frequency
n	Phase refractive index (in general complex)
$\mathrm{r}, \theta, \varphi$	Coordinates of a point in spherical polar coordinates
S	Geometric ray path length
c	Speed of electromagnetic waves in free space.
t	Time, travel time of a wave packet.
ϵ_{0}	Electric permittivity of free space

$$
\begin{align*}
R(1) & =r \tag{1}\\
R(2) & =\theta \tag{1}\\
R(3) & =\varphi \tag{1}\\
R(4) & =k_{r} \tag{1}\\
R(5) & =k_{\theta} \tag{1}\\
R(6) & =k_{\varphi} \tag{1}
\end{align*}
$$

Note $R(7)$ through $R(10)$ Variables the User Chooses to Integrate.

$$
\begin{gather*}
R(7)=P \text { Phase Path in Kilometers } \tag{1}\\
R(8)=A \text { Absorption in Decibels } \tag{1}\\
R(9)=\Delta f \text { Doppler Shift in Hertz } \tag{1}\\
R(10)=s \text { Geometrical Path Length in Kilometers } \tag{1}
\end{gather*}
$$

