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Abstract

A set of new and compact equations are derived for solving a system of
multiconductor transmission lines with arbitrary source and load
termination networks. The derivations are based on defining the reflection
coefficient matrix for multiconductor transmission lines. Expressions for
the voltage and current transfer functions are derived. For the two
conductor case, the equations reduce to well known results. The
expressions are very suitable for straight forward coding on a computer.
The validity of the derived equations is checked with published
experimental and computer models for three and four conductor

transmission line systems.
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1. Introduction

The study of coupling between wires in multiconductor systems is
important in many communication systems. These include near-end and
far-end crosstalk in the subscriber loop in telephone networks, coupling to
and from twisted wire pairs in high speed Local Area Networks (LANs),
the prediction of voltage distribution in poly-phase distribution line
systems in power line communications, and the prediction of crosstalk
noise due to high speed switching in printed circuit boards [6-17].

Previously expressions have been derived for solving multiconductor
transmission line systems, for example in [3] and [4]. These expressions
are not compact nor do they easily reduce directly to familiar two
conductor equations [1]. In this paper a set of compact equations are
derived for solving a system of multiconductor transmission lines with
arbitrary source and load terminations. Also expressions for the voltage
and current transfer functions in terms of the reflection coefficient at the
load are derived. In the derivation, the reflection coefficient matrix is
defined and the voltage and current vectors and input impedance matrix
are derived in terms of the reflection coefficient matrix at the load.

The equations derived in this paper were coded in a computer program
and used to solve a number of multiconductor transmission line systems.
Published experimental and computer model predictions for these systems

were available in the excellent work in [5] and [6].

Further comparisons between the derived multiconductor equations and
measurements from poly-phase power distribution lines, under a variety

of loading conditions, is presented in [16] and [17].

2. Derivation of Muticonductor Transfer Functions

Consider a transmission line system of n+1 conductors driven by an
arbitrary source network and terminated by an arbitrary load network as

shown in Figure 1.
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Figure 1. Multiconductor Transmission Line Configuration

We can collect the conductor voltages and currents at any point along the
line, x, in vectors as follows,

'V(x) = [ VI(x), V2(X), ... , vn(x) ]T

lex) = [ it (x), i2(X), ... , in(x) ]T

(1)

(2)

Under suitable conditions, a transmission line system can be characterized

by its per-unit parameters. Consider the three conductor case shown in
Figure 2.
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Figure 2. Three conductor per unit parameters.

We define the impedance per unit length matrix as,

(3)

and the admittance per unit length matrix as,

(4)

For general n+ 1 conductors,

ZII Z12 Zin

z= ZI2 Z22 Z2n

Zin ••• Znn (5)



and, 

Y= 

Yll+Yi2+ ···Yin -Y12

6 

-)'12 Y22+Y12+ ··· Y2n 

-y (n-l)n Y nn+Y ln+ · · · Y (n-l)n 

The vector differential equations for the general multiconductor 

transmission line can be written [1,2,3], 

aV(x) 
= -Z I(x) 

ax 

aI(x) 
= -Y V(x)

ax 

Solutions to the differential equations are [1,2,3], 

and 

(7) 

(8) 

(9) 

( 10) 

In the above equations we have defined the propagation matrix 

( 11) 

(6)
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+
In (9) V w is the incident vector voltage at x=O, or at the source boundary

V~ is the reflected vector voltage at the source boundary. Similarly for I:

and I~ • Now, define the reflection coefficient at any point x, I'(x),

- +
V J.x) = r(x)VJ.x)

Or,

Clearly,

( 12a)

( 12b)

(13)

(14 )

where I'(O) is the reflection coefficient at the source boundary.

In deriving (9), a solution for the differential equations was,

+ -yx. +
V (x) = e V w (15)

By taking the derivative of (15) with respect to x an using (7) we can

relate the forward travelling voltage vector and current,

+ -yx. +
IJx) =Yoe v; (16 )

where we have defined the characteristic admittance matrix,
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-1
YO=Z 'Y

Define the input impedance at any point x,

V(x) =Zin(x)I(x)

( 17)

(18)

Now, substitute for VeX) and lex) based on (9) and (10) into (18). Next,
+ -

eliminate Iv. and I, to obtain the following expression:

v~ = e -'YX[Zin(X)Y0 + 1] -1[Zin(X)Y 0 - I]e -1Xy:' ( 19)

Compare (19) and (13) to obtain an expression for the reflection coefficient
matrix,

I'(x) = [Zin(x)Y0 + I] -1[Zin(X)Y0 - I] (20)

Similarly the input impedance -at any point can be written In terms of the
reflection coefficient,

-1
Zin(x) = [I + r(x)] [I - rex) ]-lyo

The reflection coefficient matrix at the load IS,

The boundary condition at the source IS [3],

(21 )

(22)
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V(O) = Vs - ZsI(O)

Hence,

Write Vex) in terms of the incident voltage vector,

V(x) =[1+ roo ]e-rxy:

Let x=O in (25),

V:= [I + r(O) r' V(O)

(23)

(24)

(25)

(26)

To obtain an expression for Vex) only in terms of the source voltage Vsand
+

source and load impedances, eliminate V \\ between (25) and (26). Next

substitute for YeO) from (24). After further substitutions as appropriate

and some algebra we obtain,

V(x) = [ I + ej(x-~ r Lej(x-~ ]e-"(X[ I - e--yL r Le-)'L] -lZO

[Zs + [I + e--yLrLe-)'L][ 1- e-"fL r Le-)'L]-l Zo] -lVs (27)

Following the same procedure an expression for I(x) IS found.

J<x-Q ')(x-Q -"(X [I -"fL r --yL]-lZI(x) = Y0 [ I - e r Le ] e - e Le 0

[Zs+ [ I + e-yLrLe-"fL][ I - e-"flyLe--yL]-1 Zo ] -1 V 5 (28)
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An expression for the input impedance at any point x along the
transmission line system can be obtained in terms of the reflection

coefficient at the load.

Zin(x) =[I + e')(x-Q r L e')(x-Q ][ I - e,)(x-Q r Le')(x-Q r' Yi} (29)

By evaluating (27) and (28) at x=O, we can obtain the voltage vector and
current vector transfer functions for the transmission line system:

V(X) = [ I + e')(x-Q r Le,)(x-Q ]e-'YX[ I - e-yLrLe-yL]-lV(O)

3. Two Conductor Transmission Line System

(30)

(31 )

For two conductor transmission line systems the nxn matrices In the above

equations are scalars. In this case equations (27) and (28) reduce to the

two conductor forms [1],

(32)
and

In the above expressions

(33 )

the source and load reflection coefficients are,

(34 )



1 1

and

z -zor =_8__
S zs +ZO

The input impedance also reduces to,

(35)

(36)
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4. Summary of Derived Results

The equations necessary to solve a system of multiconductor transmh:sion

lines with arbitrary source and load termination networks derived in ti1is

paper are summarized in the Tables below. In the tables, x is the distance

from the source toward the load along the transmission lines. The length of

the transmission line system is L. 
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Table II.

Voltage transfer function

V(x) =[1+ eJ(x-l.) r Lej(x-l.) ]e-'YX[ 1- e-yL r Le-"(1..] -lV(O)

Current transfer function

I(x) =Y0 [ 1- eJ(x-l.) r LeJ(x-l.) ]e-"(X [ 1- e-jL r Le-"(1..] -lZO 1(0)

s. Comparison with Published Experimental and Computer
Results

In this section the expressions derived in the paper will be verified and
checked with published experimental and computer models for three and

four conductor coupled transmission line systems.

5.1 Reduction of Inductive Coupling by Reducing Cross-section

In Figure 3 we show a three conductor system consisting of two parallel
wires above a ground plane. Consider the coupling from the generator

wire 1 to the receptor wire 2. The per-unit-length mutual inductance

between the generator circuit and the receptor circuit is related to the

cross-sectional area between the receptor wire and the ground plane. This

is because the generator circuit produces a magnetic flux, and the mutual

inductance is directly related to the portion of this flux which penetrates

the area between the receptor wire and the ground plane shown in the

shaded region in Figure 3 [5].
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2

Figure 3 Three conductor system

Now, consider Figure 4 in which a third wire 3 has been added on the

receptor side. This wire reduces the cross-section shown in the shaded

region which in turn reduces the mutual inductive coupling. Thus, under

certain conditions this configuration will result in less coupling than the

configuration in Figure 3. Inductive coupling is dominant when the

current is large, in other words, when heavy loads are used. Otherwise,

capacitive coupling will dominate and the configuration in Figure 4 has no

advantage over Figure 3 in terms of reducing coupling. These issues will
be investigated using computer programs which calculate the coupled

voltage and currents based on the equations derived in this paper.
2

3

Figure 4. Four conductor system
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5.2 Four Conductor Transmission Line System 

The multiconductor transmission line system to be investigated is shown in 
Figure 5. In this configuration the coupling between the two straight wires 
2 and 3 onto the single wire 1 is of interest. In the following we let, 

Zs11 = O; Zs23 = ZL11 = ZL23 = R. 

We are interested in the amount of far-end coupling (voltage across ZL11) 
as the value of R is changed from 1 Ohm, to 50 Ohms and 1000 Ohms. 

I◄ L •I

2 

3 

Figure 5. Multiconductor transmission line circuit configuration 

The coupling geometry is shown in Figure 6. In the results to follow, 

h= 2 cm 

.1h = 0.00166 m (66 mils) d = 2 cm 
L = 4.572 m (15 ft) 

rw1 = rw2 = rw3 = 0.406 mm (16 mils). 

In the above, rwi, i=l,3 is the radius ct·· the conductor. The circuit

configuration in Figure 5 and the coupling geometry are the same as those

- in [5] for the case of Straight Wire Pair (SWP) experiments and computer

models ( the only difference is the length which was 15 ft and 5 1/4 inch
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In [5] ). The per unit inductance and capacitance matrix are calculated

based on [7]. Losses are taken into account, using a quasi TEM mode

approximation.

Figure 6. Four conductor coupling geometry

The results of the computer program which evaluates equations (27) for
the various values of R is shown in Figure 7. In the Figure, the far-end
crosstalk (voltage across ZL 11) is plotted against frequency.
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Figure 8. Far-end crosstalk for various loads

An examination of Figure 8 reveals that as the load is increased ( R

decreases) the coupling is significantly reduced. This verifies the fact that
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the two-wire configuration reduces coupling due to inductive coupling (
high currents). As the load is decreased ( R = 1000 Ohms) the coupling
increases. With this load, the coupling is mainly capacitive and the two
wire configuration has no, significant effect in reducing coupling. The
results in Figure 8 agree very closely with the experimental and computer
models in [5].

5.3 Three Conductor Coupling

In the following, a three conductor transmission line system is analyzed.
The system consists of two parallel wires above a ground plane. The
separation between the wires is 2 ern. Each wire is 2 ern above the ground
plane. The wire radius was 0.406 mm (16 mils) for each conductor. The
circuit configurations are exactly those of [6]. Specifically, Figure 9
corresponds to example 1, Figure 10 to example 2, and finally Figure 11 to
example 3 in [6]. In [6] experimental and theoretical results are presented.
The results presented here based on the multiconductor transmission line
equations derived in [20] and presented in this paper agree exceptionally

well with the experimental results of [6].
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6. Conclusions

In this technical report we have presented a derivation of the voltage and
current transfer functions of a system of multiconductor transmission
lines. The new equations are very compact and suitable for computer
modeling of multiconductor transmission line systems with arbitrary loads
and sources.

The validity of the derived expressions was verified by comparing results
predicted using these equations and published experimental and computer
models.
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